Military Use of Point of Care Ultrasound (POCUS)

Sheila C. Savell, PhD, RN*; Darren S. Baldwin, BS, MAA, RN†; Alexis Blessing, PhD‡; Kimberly L. Medellin, BSN, RN§; Caroline B. Savell¶; Joseph K. Maddry, MD∥

ABSTRACT

Background: Point of care ultrasound (POCUS) offers multiple capabilities in a relatively small, lightweight device to military clinicians of all types and levels in multiple environments. Its application in diagnostics, procedural guidance, and patient monitoring has not been fully explored by the Military Health System (MHS). The purpose of this narrative review of the literature was to examine the overall use of POCUS in military settings, as well as the level of ultrasound training provided.

Methods: Studies related to use of POCUS by military clinicians with reported sensitivity/specificity, accuracy of exam, and/or clinical decision impact met inclusion criteria. After initial topical review and removal of duplicates, two authors selected 17 papers for consideration for inclusion. Four of the authors reviewed the 17 papers and determined the final inclusion of 14 studies. Results: We identified seven prospective studies, of which three randomized subjects to groups. Five reports described use of POCUS in patients, two used healthy volunteers, two were in simulation training environments, four used animal models to simulate specific conditions, and one used a cadaver model. Clinician subjects ranged from one to 34. Conventional medics were subjects in six studies. Four studies included special operations medics. One study included nonmedical food service inspectors. The use of ultrasound in theater by deployed consultant radiologists is described in three reports. Conclusions: Military clinicians demonstrated the ability to perform focused exams, including FAST exams and fracture detection with acceptable sensitivity and specificity. POCUS in the hands of trained military clinicians has the potential to improve diagnostic accuracy and ultimately care of the war fighter.

Keywords: ultrasound; military; point of care ultrasound; POCUS

Introduction

The first case report of hemoperitoneum diagnosis by ultrasound in a patient who experienced blunt abdominal trauma was published in 1971.1 Subsequent studies evaluating the use of ultrasound in trauma patients led to the description of the focused assessment of sonography for trauma (FAST) exam.2,3 The FAST exam as described in the 1993 Advanced Trauma Life Support Course became a replacement for diagnostic peritoneal lavage, which was used for initial evaluation in cases of blunt abdominal trauma.2 The FAST assesses for intra-abdominal, intra-thoracic, and pericardial injury.2,3 The extended FAST (eFAST) then expanded to include an evaluation for pneumothoraces, which was described by Kirkpatrick et al. in 2004.4 The FAST/eFAST have become standard of care in trauma resuscitation and have been associated with decreased time to intervention, length of stay, cost, and complications.5,6 The utility of the eFAST exam in the prehospital setting is described as facilitating early diagnosis and interventions, such as needle decompression for pneumothorax, as well as informing evacuation priority.6,7 There are many other uses for POCUS, from evaluating for the presence of fracture or foreign bodies, to increasing accuracy in vascular access. POCUS can also be used in airway procedures and in focused cardiac ultrasound (FoCUS) for decision making in cardiac arrest.8,9 Emergency ultrasound cannot replace a thorough history and exam but may quickly answer specific questions and support decision-making.9

Ultrasound technology has the potential to improve diagnostic accuracy and enhance patient care in emergency medicine and the prehospital austere setting.6,7,10,11 Diagnostic capabilities in the combat setting may be limited, without radiography or computed tomography (CT). Portable ultrasound can be used from point of injury forward to provide support for clinical decision making by military clinicians. The Defense Advanced Research Project Administration (DARPA) awarded a grant for the development of a portable ultrasound for battlefield use in 1996. SonoSite (formally SonoSight) collaborated with the University of Washington to develop one of the first handheld ultrasound devices. In addition, several other companies began making portable ultrasound devices for civilian use.12

Rozanski et al.14 describe the early use of the SonoSite 180 Plus by the US Army’s 21st Combat Support Hospital (CSH) North facility in northern Iraq over a 6-month period. Multiple physician specialties performed 401 exams effectively and efficiently. The most common exam types were renal (n=174), FAST (n=69), nontrauma abdominal (n=44), and obstetric (n=40). They found the device to be versatile and reliable with clear and interpretable imaging. The use of portable ultrasound increased local diagnostic capabilities, decreased unnecessary evacuation, and was considered greatly beneficial to the far forward-deployed CSH.14

Military emergency medicine residency programs have incorporated extensive ultrasound training into the curriculum. In

*Correspondence to 3698 Chambers Pass, Fort Sam Houston, TX 78234 or Sheila.W.Savell.civ@mail.mil
†Dr Sheila C. Savell, ‡Darren S. Baldwin, ¹Dr Alexis Blessing, Kimberly L. Medellin, ²Caroline B. Savell, and ³Lt Col Joseph K. Maddry are all affiliated with the US Air Force En Route Care Research Center at JBSA-Fort Sam Houston, TX. Alexis Blessing is also affiliated with the Oak Ridge Institute for Science and Education, Oak Ridge, TN. Lt Col Joseph K. Maddry is also affiliated with the Brooke Army Medical Center Department of Emergency Medicine, JBSA-Fort Sam Houston, TX.
POCUS offers multiple capabilities in a relatively small, lightweight device to military clinicians of all types and levels in multiple environments. Its application in diagnostics, procedural guidance, and patient monitoring has not been fully explored by the MHS. The purpose of this narrative review of the literature was to examine the overall use of POCUS in military settings, as well as the level of ultrasound training provided.

Methods

The authors searched PubMed, Cochrane, Scopus, Web of Science, and the Defense Technical Information Center databases using the key terms of military and ultrasound. Studies related to use of POCUS by military clinicians, with reported sensitivity/specificity, accuracy of exam, and/or clinical decision impact met inclusion criteria. After initial topical review, and removal of duplicates, two authors (SCS, AB) reviewed 40 full-text publications and selected 17 papers for inclusion consideration. Four of the authors (SCS, DSB, AB, KLM) reviewed the 17 papers and determined the final inclusion of 14 studies. Authors excluded reports that did not report sensitivity/specificity, accuracy of exam, and/or clinical decision impact, as well as literature reviews. We rated the studies using the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. Outcomes reported in this narrative literature review include sensitivity/specificity, exam accuracy, and if the exam had impact on clinical decision making.

Results

Fourteen studies met the inclusion criteria (Table 1). However due to variance among study types, reported results, and levels of evidence, a meta-analysis was not attempted. We identified seven prospective studies, of which three used randomization of subjects to groups. Five reports described use of POCUS in patients, two used healthy volunteers, and two were in simulation training environments. Four studies used animal models to simulate specific conditions, and one used a cadaver model.

Use by Military Medics and Other Nonphysicians

Conventional Army medics were the subjects of four prospective studies. The medics in these studies had no prior experience or training with ultrasound. After completion of a 4-hour eFAST training, when compared to emergency medicine resident physicians, medics took longer to complete the eFAST exam (532 versus 227 seconds) but had similar diagnostic accuracy when comparing sensitivity (medics 88–95%, resident physicians 92–95%). Twenty-eight medics completed a 2-hour training and identified foreign bodies in a soft tissue model with sensitivities of 73% and 78% (size dependent), and specificity of 78%. A cadaver model was used to evaluate the ability of medics to detect endotracheal tube placement, after a 15-minute lecture and hands-on practice. Cadavers were randomly assigned to esophageal or tracheal tube placement for 32 participants. In an average time of 47.3 seconds, medics correctly identified tracheal placement at a rate of 72% and esophageal placement at 71%. Twenty-two medics and physician assistants (number of each not specified) achieved a sensitivity of 99.2%, specificity of 95.5%, with an accuracy of 97.7% when evaluating abscesses in a tissue model. Backlund et al. conducted a pilot study to assess the ability of 12 Army National Guard medics to determine cardiac activity in healthy volunteers, after a 5-minute lecture and brief hands-on training. In this pilot study, 92% of the exams accurately documented the presence of cardiac activity with a mean time to completion of 5.5 seconds.

Training

Training for five of the included studies ranged from 3 to 25 minutes and included a brief lecture, or slide show, followed by hands-on practice. Five studies reported training ranging from 90 minutes to 4 hours, that also included didactic instruction followed by hands-on practice. One study reported results after Special Operations medics completed the SOLCUS course. Participants attended various components (8 to 52 hours, mean of 16.7 hours) of the SOLCUS training, prior to deployment. With the exception of the three reports on radiologists, all participants had no to little prior ultrasound experience. These studies demonstrate the ability of ultrasound naïve clinicians to successfully perform specific ultrasound exams with minimal training and practice.
TABLE 1: Reports of Military Use of Ultrasound

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Type and Aim</th>
<th>Subjects</th>
<th>Device</th>
<th>Training/Intervention</th>
<th>Results</th>
<th>Conclusions</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monti et al. 2019</td>
<td>Prospective, randomized, cohort study in the Medical Simulation Training Center at Joint Base Lewis McChord. The primary objective was to assess the impact of a 4-hour introductory training intervention on conventional military medic participants' knowledge/performance of the eFAST application.</td>
<td>34 Army medics naïve to US</td>
<td>Fukuda Denshi USA device with phased array (2-5 MHz) and linear array (5-12 MHz) transducer</td>
<td>Participants were randomized to receive either conventional, expert-led classroom didactic training or didactic training via an online, asynchronous available platform. Medic cohorts: (1) 90 min classroom didactic and 150 min hands-on instruction (n=19) (2) 90 min video from SonoSim and 150 min hands-on instruction (n=15)</td>
<td>The 50-question knowledge assessment pre/post training intervention increased from 27% to 83%. There was no statistically significant difference in diagnostic accuracy between medic groups. The medic cohort completed the exam more than twice as fast compared to the resident cohort. Hemoperitoneum present: sensitivity: medics 95%; EM resident 93%. Hemoperitoneum absent: specificity: medics 95%; EM resident 90%. Hemopericardium present: sensitivity: medics 88%; EM Residents 92%. Hemopericardium absent: specificity: medics 60%; EM residents 100%.</td>
<td>A 4-hour introductory eFAST training intervention can effectively train conventional military medics to perform the eFAST exam.</td>
<td>2</td>
</tr>
<tr>
<td>Driskell et al. 2020</td>
<td>Prospective, single-blinded, observational simulation to determine Army medics' accuracy performing bedside US to detect radiolucent foreign bodies in a soft tissue hand model.</td>
<td>28 Army medics naïve to US</td>
<td>SonoSite M-Turbo with 13-6 MHz linear transducer</td>
<td>1-hour didactic and 1-hour hands-on training, used chicken model, gave 20 randomized models</td>
<td>Sensitivity 66.7%, specificity 78% Less than 2 mm FB: sensitivity 73%, specificity 78% ≥ 2 mm FB: sensitivity 78%, specificity 78%</td>
<td>Army medics can detect FBs in tissue models with similar sensitivities and specificities to radiologists and emergency medicine physicians in similar studies.</td>
<td>2</td>
</tr>
<tr>
<td>Hanlin et al. 2021</td>
<td>Prospective randomized trial to determine ability to detect endotracheal tube placement in a fresh human cadaver model.</td>
<td>32 Army medics, recently completed EMT-B certification, enrolled in paramedic training program.</td>
<td>SonoSite M-Turbo with a 10-5 MHz linear transducer</td>
<td>15-minute lecture on transtracheal US techniques, followed by hands-on practice with 20 randomized models</td>
<td>Sensitivity 76.3%, specificity 78% Average time: 4.03 seconds; correctly identified 13/18 tracheal placements and 10/14 esophageal placements.</td>
<td>Trained were accurately able to identify EBFT when using the transtracheal US technique after a short educational session.</td>
<td>2</td>
</tr>
<tr>
<td>Backlund et al. 2022</td>
<td>Pilot study to assess ability of combat medics to perform a focused echocardiography (FE) to determine cardiac activity in healthy volunteers.</td>
<td>12 Army National Guard combat medics trained to the level of EMT-B.</td>
<td>Not specified</td>
<td>Not specified</td>
<td>44 of 48 (95.8%) exams accurately documented presence of cardiac activity in a time to completion of 5.5 seconds.</td>
<td>With minimal training, the majority of the medics were capable of performing Focused Echo exams in a short period of time.</td>
<td>3</td>
</tr>
<tr>
<td>Reference</td>
<td>Subjects</td>
<td>Device</td>
<td>Training/Intervention</td>
<td>Study Type and Aim</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaDuke et al., 2019</td>
<td>22 participants (PAs, SOF, and conventional force medics, veterinary technicians, and food service inspectors) with no prior US training</td>
<td>SonoSite X-Porte or SonoSite Vet (SonoSite 180 equivalent) with 10–5 MHz linear transducer</td>
<td>Received 20 min didactic session and 30 min hands-on training, followed by hands-on training</td>
<td>Prospective observational study to determine if nonphysician military providers could use US to detect superficial abscesses in tissue models.</td>
<td>Sensitivity 95.4%, specificity 77.2%, accuracy 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mount et al., 2019</td>
<td>22 US Army medics and PAs with minimal to no prior US training</td>
<td>SonoSite M-Turbo with 10–5 MHz linear transducer</td>
<td>Received 10 min slide show training and orientation to US machine</td>
<td>Descriptive study to examine the potential for nonphysician providers to determine the presence of a superficial abscess in clinical tissue models.</td>
<td>Mtrainees = 0.459 mm, p = .76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betcher et al., 2019</td>
<td>38 participants (18Dons) during emergency medicine rotation with minimal prior training in US</td>
<td>SonoSite M-Turbo with 10–5 MHz linear transducer</td>
<td>Received 3 min orientation and training</td>
<td>Descriptive study, simulation to evaluate the ability of 18Dons to measure the presence of long bone fractures with minimal focused training.</td>
<td>Sensitivity 100%, specificity 99.5%, accuracy 99.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heiner et al., 2019</td>
<td>29 US Army Special Forces (18Dons) – 1st Battalion, 3rd Special Forces Group deployed to Afghanistan</td>
<td>SonoSite M-Turbo with 10–5 MHz linear transducer</td>
<td>Not specified</td>
<td>Prospective study to evaluate the use of portable US by 18Dons for fracture detection.</td>
<td>Not specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenison et al., 2019</td>
<td>29 SOCM trainees during emergency medicine rotation with minimal prior training in US</td>
<td>SonoSite M-Turbo with 10–5 MHz linear transducer</td>
<td>Received 20 min didactic session</td>
<td>Descriptive study, simulation to evaluate the ability of 18Dons to measure the presence of long bone fractures with minimal focused training.</td>
<td>Mtrainees = 0.459 mm, p = .76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renard et al., 2019</td>
<td>18Dons and 18 medics deployed to Afghanistan</td>
<td>SonoSite M-Turbo with 10–5 MHz linear transducer</td>
<td>Received 10 min slide show training and orientation to US machine</td>
<td>Case study to describe the use of portable US by 18Dons for fracture detection.</td>
<td>Mtrainees = 0.459 mm, p = .76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sellon et al., 2019</td>
<td>41 SOCM trainees during emergency medicine rotation with minimal prior training in US</td>
<td>SonoSite M-Turbo with 10–5 MHz linear transducer</td>
<td>Received 3 min orientation and training</td>
<td>Prospective study, simulation to evaluate the use of portable US by 18Dons for fracture detection.</td>
<td>Mtrainees = 0.459 mm, p = .76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasios et al., 2019</td>
<td>26 SOCM trainees during emergency medicine rotation with minimal prior training in US</td>
<td>SonoSite M-Turbo with 10–5 MHz linear transducer</td>
<td>Received 15 min didactic session, followed by hands-on training</td>
<td>Descriptive study, simulation to evaluate the ability of 18Dons to measure the presence of long bone fractures with minimal focused training.</td>
<td>Mtrainees = 0.459 mm, p = .76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Continued
<table>
<thead>
<tr>
<th>Device</th>
<th>Prospective study to evaluate the usefulness of point-of-care US (POCUS) performed by young military medicine residents after short practical training in the diagnosis of medical emergencies</th>
<th>2 military medicine residents in a French Army teaching hospital March 2015–March 2016</th>
<th>SonoSite M-Turbo</th>
<th>Received a 90-min theoretical and practical (10 USs in healthy students, 50 USs in patients with symptoms, observed by trainer) US training focused on the gallbladder, kidney, and upper urinary tract and the deep venous network of the lower extremities</th>
<th>Did not report sensitivity and specificity. 48 patients had US, 18 gallbladder, 16 renal, 14 lower extremity. POCUS improved diagnostic accuracy in 73% of cases, was misleading in 2% and did not contribute to 25%.</th>
<th>POCUS performed after clinical examination increases the diagnostic accuracy of young military medicine residents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renard et al.29</td>
<td>Prospective observational pilot study to evaluate whether the implementation of E-FAST was possible in conditions close to combat and if it changed the therapeutic and evacuation strategies</td>
<td>15 trainee physicians during French predeployment simulation training</td>
<td>Vscan (GE)</td>
<td>MEDICOS (medical courses in hostile environments) internship November 2017, March and June 2018; 2-hour training on the use of the Vscan and US devices were provided, trainees to use their discretion</td>
<td>eFAST or POCUS exams performed on 44 of 168 (26%) simulated patients. 51% of US cases had a significant impact of therapeutic and evacuation priorities, it changed therapeutic decisions in 67% of time and evacuation priorities in 72% of time</td>
<td>US on the simulated battlefield was possible and useful. To confirm these results, US needs to be democratized and assessed in a real operational environment.</td>
</tr>
<tr>
<td>Sellon et al.30</td>
<td>Prospective questionnaire-based (6 month) study aimed to assess the usefulness of departmental diagnostic US in the remotely deployed role 2 hospital setting</td>
<td>Consultant radiologist at a Role 2 MTF–Op TRENTO 3</td>
<td>SonoSite M-Turbo with a 2.5 MHz convex probe and 10 MHz linear probe</td>
<td>41 departmental scans 28 July–28 December, 2017, by radiologist</td>
<td>In 28 of 41 (68%) cases US increased diagnostic confidence and 29% (12/41) led to a change in patient management. 1 (3%) had no clinical impact. Musculoskeletal exams had the greatest impact.</td>
<td>This study highlights the utility of this capability at role 2, CT scan is not available.</td>
</tr>
<tr>
<td>Carter et al.31</td>
<td>Retrospective record review to determine accuracy of FAST in the deployed environment</td>
<td>3 consultant radiologists deployed to the Role 3 MTF, Camp Bastion, Jan–May 2014</td>
<td>SonoSite 4–6 MHz with curvilinear probe</td>
<td>Radiologists were embedded in the trauma bay</td>
<td>187 FAST exams performed. 169 of 187 had subsequent laparotomy or CT full body trauma scan and were included in analysis. Sensitivity 75%, Specificity 99.3% Overall accuracy 94.7% ID of intraperitoneal free fluid – PPV 96.2% and NPV 94.4%</td>
<td>FAST provided by the integrated radiologist as part of damage control radiology, gives the team leader rapid diagnostic information to improve decision-making and ultimately patient outcomes in the combat MTF.</td>
</tr>
<tr>
<td>Smith et al.32</td>
<td>Retrospective review of registry data to determine use and accuracy of FAST and CT</td>
<td>Attending radiologist at Role 3 MTF, Camp Bastion, July–Nov 2012</td>
<td>Not specified</td>
<td>Attending radiologists</td>
<td>468 casualties, 85% underwent FAST and 86.1% had CT, 34% had abdominal injury Detection of intra-abdominal injury; FAST: sensitivity 56%, specificity 98%, PPV 87%, NPV 90%, accuracy 89% CT: sensitivity 99%, specificity 99%, PPV 96%, NPV 100%, accuracy 99%</td>
<td>FAST and CT were useful in resuscitation care at Role 3, to enhance diagnostic sensitivity and specificity in battlefield injuries. FAST should be available in the absence of CT capability. The use of radiologists for FAST can free emergency MD to focus on other aspects of care.</td>
</tr>
</tbody>
</table>
in four cases, and in all cases correctly diagnosed fractures (femur, distal fibular, phalanx, tibial), which were later confirmed by radiography.\(^\text{27}\) In a prospective study, 23 Special Operations medic trainees underwent training to measure the optic nerve sheath diameter (ONSD) in healthy volunteers and compared their measurements to those of emergency medicine physicians.\(^\text{25}\) After undergoing a 5-minute lecture and demonstration, medic trainees reported similar measurements in comparison to emergency medicine physicians (mean physician = 0.465 mm versus mean trainee = 0.439 mm, \(p = .76\)).\(^\text{25}\) Twenty-two physician assistants, Special Operations and conventional medics, veterinary technicians, and food service inspectors (numbers of each group not specified) were able to accurately detect pneumothorax in a porcine model, after a 10-minute slide show and brief orientation to ultrasound equipment. These ultrasound naive participants correctly identified 21 of 22 pneumothoraces, achieving a sensitivity of 95.5% and a specificity of 100%.\(^\text{24}\)

Use by Military Physicians

Five studies reported physician use of POCUS, one simulation study, one in-garrison, and three reports of the use of ultrasound in the combat setting.\(^\text{28-32}\) Fifteen trainee physicians completed a 2-hour ultrasound course and were provided US devices to use at will, in a simulated combat setting. The participants performed eFAST/POCUS on 44 of 168 (26%) simulated patients, and in 51% of US cases, there was a significant impact on therapeutic and evacuation priorities. Therapeutic decisions changed in 67% of cases and evacuation priorities in 72% of cases.\(^\text{29}\) Two military medicine resident physicians performed POCUS on 48 patients in a French Army teaching hospital. POCUS improved diagnostic accuracy in 73% of cases.\(^\text{28}\) Two studies reported the use of POCUS by radiologists, for 585 exams at a Role 3 military treatment facility (MTF) in Afghanistan.\(^\text{31,32}\) The reported FAST sensitivity was 56 and 75%. However, specificity reached 98 and 99%, with overall accuracy of 89 and 94.4%.\(^\text{31,32}\) A prospective 6-month survey of a consultant radiologist in a Role 2 MTF, where CT imaging capability was not available, found POCUS increased diagnostic confidence in 68% of cases and led to change in patient management in 29% of cases.\(^\text{30}\)

Discussion

The evidence related to the use of POCUS by military clinicians is limited. This literature review included 14 published studies with mostly moderate levels of evidence. The sample sizes were small and there was not enough duplication of findings for specific exams. However, the findings consistently demonstrate the ability of military clinicians, ranging from conventional medics to physicians, to perform focused exams with moderate to high success. With minimal training, conventional medics can achieve acceptable sensitivity and specificity in FAST exams, and fracture detection. However, we found no published reports related to retention of knowledge and ability.

Conventional medics demonstrated less accuracy in the detection of foreign bodies and in confirmation of airway placement. Army Special Forces medics receive extensive training in POCUS, but only one study reported sensitivity (100%) and specificity (90%) in a simulated fracture model. Only two of five studies with physician subjects reported specificity and sensitivity. Military physicians report increased accuracy and confidence in diagnoses, as well as impact on patient management. In-theater radiologists demonstrated an overall accuracy in FAST exams of 89% to 99% (specificity 98% to 99%); however, sensitivity was only 56% to 75%.\(^\text{30,31}\)

The findings of our review specific to military clinicians are similar to those of previous civilian literature reviews. Overall higher specificity versus sensitivity add support to the finding that POCUS has more utility in ruling in specific conditions than ruling out a condition. A systematic review of POCUS use in prehospital critical care included 27 studies and concluded POCUS is feasible and changes patient management in trauma, breathing difficulties, and in cardiac arrest. However, it is unknown if it improves patient outcomes.\(^\text{7}\) A Cochrane review specific to use of POCUS in diagnosing thoracoabdominal injuries in patients with blunt trauma included 34 studies with 8,635 participants. The report concluded that in suspected blunt thoracoabdominal trauma, positive ultrasound findings could help guide treatment decisions.\(^\text{33}\)

More extensive reviews of POCUS in civilian settings provide additional evidence of the potential POCUS can offer in military health care. The use of POCUS in the deployed setting has not been fully explored, however the growing evidence in support of its utility warrants ongoing study. Research needs to address which applications have the most potential to improve outcomes in combat casualty care. Training guidelines and standards should be established to determine optimal course content, length, delivery method, and the minimum number of scans for each type to achieve competence. Evidence supports image acquisition and interpretation can be taught to medical novices. However, clinical background is important for appropriate patient management.\(^\text{6}\) Future research should consider strategies to prevent skill decay and promote knowledge retention. Research to consider the role telemedicine can play to support prehospital POCUS, the logistics of image transmission, and communication with higher-level providers is warranted. More research to determine sensitivity and specificity of various POCUS applications in the hands of military clinicians will inform best practices related to POCUS.

Further investigation into which ultrasound machine is best suited for the combat environment is required. Portable ultrasound is lightweight, easy to carry, and has minimal power requirements when compared to portable radiography, therefore increasing its utility in austere environments.\(^\text{26}\) However, it is important to plan for anticipated conditions in the austere and resource-constrained combat theater. Considerations for device selection include: performance at high altitudes, function in extreme temperatures, protection from moisture; ultrasound gel supply, storage, and response to extreme temperatures; battery life, condition, and supply; and overall ruggedness and ability to withstand extreme conditions. SonoSite developed the first handheld device used by the military and the SonoSite M-Turbo was the most common device reported in the studies we reviewed. There are other devices with potential utility in
combat care (Table 2). The end-users should be consulted to determine desired device characteristics. Forty combat medics compared a novel US finger transducer to a conventional transducer in a simulation study. Diagnostic accuracy was similar between transducers; however, the mean completion times were better with the conventional transducer (304 versus 358 seconds; $p = .03$). In addition, the medics scored the conventional transducer higher for ease of use. Additional research comparing available technology needs to be conducted.

There are limitations to the conclusions that can be drawn from the findings of a narrative literature review. The method for determining inclusion/exclusion may be somewhat subjective and lead to selection bias. The focus of this literature review on military personnel only, yielded studies with small sample sizes and variations in outcome measures. Studies of civilians with similar roles and training may have larger sample sizes and outcomes that are more congruent. However, it is important to describe the available evidence for this unique population, in order to lay the foundation for future study.

Well-designed prospective, randomized studies with larger sample sizes, as well as longitudinal designs, would yield more meaningful data to determine level of training required. These can also inform sustainment training. There is a need to conduct prospective and retrospective studies, designed to evaluate the use of POCUS by military clinicians. These should include evaluation of sensitivity and specificity, as well as patient outcomes.

Conclusions

Military clinicians demonstrated the ability to perform focused exams, including FAST exams and fracture detection, with acceptable sensitivity and specificity. POCUS in the hands of trained military clinicians has the potential to improve diagnostic accuracy and ultimately care of the war fighter.

Presentation

This literature review was presented in online poster format at the San Antonio Universities and Military Research Forum (SURF), June 2020. It was also presented in poster format at the 2020 Special Operations Medical Association Scientific Assembly.

Funding

Defense Health Agency J9. This research was supported in part by an appointment to the Postgraduate Research Participation Program at the US Army Institute of Surgical Research administered by the Oak Ridge Institute for Science and

TABLE 2 Portable Hand-Held Devices

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Size</th>
<th>Weight</th>
<th>Transducers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE Healthcare Vscan Extend Vscan</td>
<td>Handheld device with dual-headed probe, store images through Wi-Fi or USB, 60-min continuous scanning on full charge, online apps available to augment studies, educational videos available, requires gel</td>
<td>Device: 170 × 78 × 21 mm (6.6 × 3.0 × 0.8 in)</td>
<td>Dual probe: 12.9 × 3.9 × 2.8 cm (5.1 × 1.5 × 1.1 in)</td>
<td>Two transducers in one probe: linear and sector</td>
</tr>
<tr>
<td>Sonosite iViz</td>
<td>Durable aluminum tablet with multiple transducers, cloud storage, and 64-GB flash drive, three swappable batteries each with 1-hour continuous scan time, embedded educational tools, requires gel</td>
<td>Tablet: 18.3 × 11.7 × 2.7 cm (7.2 × 4.6 × 1 in)</td>
<td>Tablet: 570g (1.1 lb)</td>
<td>Curved C60v, linear 125v, linear 138v, phased p21v</td>
</tr>
<tr>
<td>Philips Lumify</td>
<td>Transducers attach to android devices, app-based, uses tablet as a power source, no long-term commitment, battery life depends on attached device, requires gel</td>
<td>Curved transducer: 4.5 × 11.4 cm (1.8 × 4.5 in)</td>
<td>Curved transducer: 136 g (0.3 lb)</td>
<td>Linear L12–4, curved c5–2, phased S4–1</td>
</tr>
<tr>
<td>Butterfly iQ</td>
<td>Transducer attaches to Apple mobile devices, built-in battery, wireless charging, unlimited cloud storage, uses silicon chip, does not use Piezo crystal technology, 2 hours of continuous scanning on full charge, no gel required</td>
<td>Transducer: 185 – 56 – 35 mm (7.2 × 2.2 × 1.4 in)</td>
<td>Transducer: 313 g (0.7 lb)</td>
<td>Single transducer emulates any kind of transducer</td>
</tr>
<tr>
<td>Clarius C3</td>
<td>App based, wireless, does not require Internet access to operate</td>
<td>Device: 167 × 99 × 42 mm (6.6 × 3.9 × 1.6 in)</td>
<td>Device: 540 g (1.2 lb)</td>
<td>Three clip-on tips to scan entire body</td>
</tr>
<tr>
<td>Convex</td>
<td>Handheld device with three probes in one, works on iOS and Android educational videos available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Some data from Canepa and Harris (2019).
Education through an interagency agreement between the US Department of Energy and USAISR.

Disclosures
The views expressed are solely those of the authors and do not reflect the official policy or position of the US Army, US Navy, US Air Force, the Department of Defense, or the US Government. The authors have no financial relationship relevant to this article to disclose.

Author Contributions
JKM and SCS conceived the study concept. JKM obtained funding. SCS, CBS and DSB completed the literature search coordinated and collected the data, and AB reviewed and summarized findings in table. SCS wrote the first draft, and all authors read, edited, and approved the final manuscript.

References
FEATURE ARTICLES: Tourniquet Practice Models
Atherosclerosis in Elite Special Operations Forces
23.4% Hypertonic Saline for TBI
The Effect of Airdrop on Fresh Whole Blood
Military POCUS Unconventionally Acquired Brain Injury
Prehospital Trauma Registry After-Action Reviews in Afghanistan
Telemedicine Capabilities of Special Operations
Targeted Intervention in Patients With mTBI
Back Pain in Italian Helicopter Aircrews TXA Use in TEMS Providers
CASE REPORTS: TXA Use in TEMS Providers Infectious Myositis Bacteria on Female Urinary Diversion Devices
IN BRIEF: Far-Forward Blood Donation
ONGOING SERIES: Human Performance Optimization, Infectious Disease, Injury Prevention, Law Enforcement & Tactical Medicine, Research: How To, Veterinary Medicine, TCCC Updates, and more!

A Peer Reviewed Journal That Brings Together The Global Interests of Special Operations’ First Responders

Dedicated to the Indomitable Spirit, Lessons Learned & Sacrifices of the SOF Medic