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ABSTRACT

Future expeditionary missions are expected to occur in more 
remote austere environments where combat medics and ca-
sualties may have to wait up to 7 days before resupply or 
safe evacuation. Currently, there is no effective fluid ther-
apy for hemorrhagic shock (HS) at the point-of-injury and 
continuum-of-care over this extended period. We have been 
developing a small-volume IV or IO ALM therapy for non-
compressible HS and have shown in preclinical models that 
it extends survival to 3 days, reduces abdominal bleeding 
by 60%, blunts inflammation, corrects coagulopathy, pre-
serves platelet function, and prevents immunodeficiency. The 
ALM-survival phenotype is associated with an upregulation of 
the master genes of metabolism and mitochrondrial biogene-
sis in heart and brain and a downregulation in the periphery. 
Future translational studies will investigate the timing and na-
ture of the “switch” and extend survival to 7 days. We will 
also discuss some of the controversies of ALM resuscitation in 
pigs, present our Systems Hypothesis of Trauma (SHOT), and 
discuss future clinical safety trials before field use.

Keywords: hemorrhage; trauma; survival; genetics; metabo-
lism; inflammation; military medicine; resuscitation

Today, defense of the homeland focuses on placing 
military capabilities as far forward as possible.

—Joint Operating Environment 20351p25

Background: The New Combat Environment: 
Challenge of Change

The 2016 Joint Operating Environment document posits that 
over the next 20 years there will be a wide range of threats 
and persistent conflicts. Future expeditionary missions are ex-
pected to occur in more remote, austere environments, where 
combat medics and casualties may have to wait up to 5 to 7 
days before resupply or evacuation.

Hemorrhagic Shock: A Widening Gap 
in Far Forward Medicine

In 1984, Col Ronald Bellamy launched a challenge to develop 
new resuscitation fluid therapies to treat combatants with 
severe blood loss and reduce preventable deaths in austere 

environments.2–5 “For every casualty who dies of wounds in 
a medical treatment facility (MTF)”, he wrote, “as many as 9 
have already died.”2 Over 3 decades later, this capability gap 
remains wide open. A 2012 US Joint Trauma System study 
reported 87.3% of combat deaths in the Iraq and Afghani-
stan wars occurred before the casualty reached an MTF (4,596 
deaths), with 24.3% deemed potentially survivable.4,6 Of those 
deaths, 91% were from hemorrhage with 67% being truncal 
(noncompressible), 19% junctional, and 14% peripheral-ex-
tremity.6 Similarly, in the civilian prehospital setting, rapid 
transport of the wounded to a tertiary trauma care facility 
to resuscitate and surgically intervene is not always possible.7 
A second capability gap that remains wide open in the far 
forward combat environment is prolonged field care to sta-
bilize the casualty and reduce secondary injury progression. 
Secondary injury progression is one of the most critical win-
dows of opportunity to reduce morbidity and mortality. Time 
is the biggest killer in both these acute and continuum-of-care 
scenarios.

The First ALM “Idea”:  
Human Translation into Cardiac Surgery

Twenty years ago, GPD asked if it was possible to pharmaco-
logically manipulate the human heart to operate more like the 
heart of a natural hibernator for improved protection during 
cardiopulmonary bypass or valvular surgery.8–10 Within 10 
years, we translated a high-dose ALM cardioplegia from an 
isolated rat heart into human cardiac surgery. We chose ade-
nosine (A) to inhibit the sinoatrial node and reduce the atrial 
and ventricular action potential (AP) duration (A1 receptor 
subtype and A1 linked opening of KATP channels), lidocaine (L) 
to reduce AP amplitude by arresting Na+ fast channels, and 
magnesium (M) to stabilize the membrane and protect against 
reperfusion arrhythmias.11 We theorized this strategy will ar-
rest the heart at its resting membrane potential and avoid the 
use of high potassium, which depolarizes the membrane and 
promotes “ischemic” injury currents.12,13 Two prospective, ran-
domized, clinical trials have shown the ALM cardioplegia to be 
superior to high potassium cardioplegia with less days in hos-
pital.14,15 After surgery, the heart is reanimated in sinus rhythm 
with 10 times lower concentrations of ALM, which is facili-
tated because its resting membrane potential is “ready to fire.” 
This resuscitation strategy led to a second idea; namely, could 
low-dose ALM resuscitate the heart after major trauma?10
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ALM for Trauma: Teaching Old Drugs New Tricks

Our first proof-of-concept ALM trauma experiments were 
conducted in 2009.16,17 We have subsequently shown in rat 
models that boluses and infusions of low-dose ALM protect 
the heart and whole body against regional myocardial isch-
emia,18–20 cardiac arrest,21,22 pressure- and volume-controlled 
hemorrhagic shock,16,17,23 polymicrobial sepsis,24,25 and surgi-
cal trauma.26 Importantly, the individual actives, A, L, or M do 
not confer these benefits alone.10,27 Standout features of ALM 
protection and pro-survival properties include (1) potent anti-
arrhythmic, (2) lowering myocardial energy demand, (3) abil-
ity to hypotensively resuscitate mean arterial pressure (MAP) 
from different shock states, (4) correction of coagulopathy, (5) 
preservation of platelets, 6) endothelial protection, (7) anti- 
inflammatory, and (8) immunomodulatory10,28 (Table 1). Stud-
ies carried out by US Army Institute of Surgical Research have 
also shown that ALM protects against endothelial glycocalyx 
shedding with 97% restoration after hemorrhagic shock.29 On 
the basis of our ALM trauma studies, which are summarized 
next, we hypothesize that if the central nervous system (CNS) 
control of cardiovascular coupling is maintained following 
trauma, the endothelium will be protected, mitochondrial en-
ergetics will be maintained, and coagulopathy and inflamma-
tion will be minimized. This conceptual scheme is termed the 
Systems Hypothesis of Trauma (SHOT) and helps to explain 
why certain groups of severely bleeding trauma patients are 
still dying despite receiving the best medical care.28

TABLE 1  Defining the ALM-Induced Survival Phenotype After 
Severe Trauma

•	 Potent antiarrhythmic

•	 Cardiac preconditioning mimetic and lowers energy demand

•	 Correction of trauma-induced coagulopathy 

•	 Preserved platelet aggregation 

•	 Reduced systemic inflammation

•	 Protection against immunodeficiency and infection

•	 Improved left ventricular–arterial coupling

•	 Increased blood flow to brain and gut 

•	 Restoration of endothelial–glycocalyx shedding

•	 Improved tissue oxygenation 

•	 Hypotensive resuscitation with neuroprotection

•	 Reduced sympathetic/parasympathetic input to heart

•	 Maintenance of membrane potential in healthy and injured cells 

•	 Differential expression of master genes of metabolism

•	 Improved thermoregulatory control

•	 Improved central nervous system–cardiovascular–endothelial 
coupling as part of the Systems Hypothesis of Trauma (SHOT) 

 
Noncompressible Hemorrhagic Shock

Shock is: “a momentary pause in the act of death.”
—John Collins Warren (1895)

In 2015 our first USSOCOM-funded study showed that 3% 
NaCl ALM bolus and 0.9% NaCl ALM drip improved sur-
vival (100% vs 62% for controls), significantly increased 
cardiac output (CO) (2.4-fold) and left ventricular fractional 
shortening, and increased blood flow to gut and kidney.30 This 
acute experiment in anesthetized rats involved uncontrolled 
blood loss from resecting the liver (60% left lateral lobe and 
50% medial lobe) with 6-hour monitoring.30 An unexpected 
finding was showing that ALM reduced internal blood loss 

by up to 60% and acted like a pharmacological tourniquet.30 
We argued that this may be related to ALM correction of co-
agulopathy, which was also consistent with preserved platelet 
function and reduced endothelial activation and suppressed 
systemic inflammation31 (Tables 1 and 2). In addition to trau-
matic hemorrhage, we also examined the effect of the same 3% 
NaCl ALM bolus and 0.9% NaCl ALM drip therapy in a rat 
model of moderate traumatic brain injury (TBI) and showed 
a survival benefit compared with controls, and a major re-
duction in secondary injury expression including correction of 
coagulopathy, blunting of endothelial activation, and reduced 
systemic inflammation and brain injury markers32 (Table 2).

The second noncompressible hemorrhage study in rats exam-
ined if ALM therapy could increase survival to 72 hours in 
the conscious animal. We showed the mean survival time for 
saline controls was 22 hours and ALM group was 72 hours 
(P < .001, experimental endpoint).33 Survival was associated 
with higher CO, reduced inflammation, protection from im-
munosuppression, preserved platelet function, correction of 
coagulopathy, and differential regulation of the master genes 
of metabolism. Expression of ampk, sirt-1, and PGC-1α were 
significantly upregulated 2- to 3-fold, and mtCO3 was upreg-
ulated 10-fold in the heart and brain compared with controls. 
The upregulation of mtCO3 indicates improved structure and 
stability of cytochrome c oxidase, the complex that drives ATP 
synthesis. More recently, we have shown TFAM (transcrip-
tion factor A, mitochondrial), a gene involved in mitochon-
drial biogenesis, was also significantly increased in heart and 
brain. Mitochondrial biogenesis is the process by which cells 
increase mass via growth and division of preexisting mito-
chondrial networks.34 In direct contrast, ALM downregulated 
ampk, sirt-1, PGC-1α, and mtCO3 expression in the periphery. 
For example, mtCo3 expression in liver was downregulated 
by 90% indicating a major reduction of hepatic ATP demand. 
Our new data appear to show that ALM switches and repro-
grams the whole body into a pro-survival phenotype with sup-
pression of secondary injury processes. Key questions remain: 
Given that the half-lives of each active in ALM are seconds to 
a few hours,10 when does the “switch” occur? How long can 
the survival phenotype be sustained? Future efforts will exam-
ine if survival time can extend to 7 days which has significant 
military relevance.

Rat-to-Pig Translation

In our first translational study in pigs, we showed that a 20mL 
bolus of 7.5% NaCl ALM (0.5mL/kg) led to a 40% reduction 
in fluid volume (IV Ringers acetate) required to increase MAP 
from 30–35mmHg to a target MAP of 50mmHg after 90 min 
of 74% controlled blood loss.35 We also found returning shed 
blood (1.6 to 2L) after 60 min with a 10mL bolus of 0.9% 
NaCl AL resulted in a significant 27% drop in whole body 
O2 consumption, higher CO, and significantly improved renal 
function compared with controls10,35 (Table 3). In our second 
study using the pressure-controlled hemorrhage model (73% 
blood loss), a single bolus of 4mL/kg 7.5% NaCl ALM bolus 
(~7% of shed volume), with no other fluid, raised MAP from 
30–35 to 55mmHg accompanying a nearly 2-fold increase in 
stroke volume (SV) at 60 min compared with saline controls, 
which began to decompensate (MAP 32 ± 3mmHg) with one 
death.36 The 2-fold increase in SV was due to an increase in 
systolic ejection time (129 ± 10 vs 84 ± 12 ms, P < .05) and 
~20% decrease in heart rate (HR).36 After 60 min hypotensive 
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resuscitation, shed blood was returned with 10mL 0.9% NaCl 
AL bolus and whole body O2 consumption fell by ~15%, sys-
temic vascular resistance increased by 30%, and urine out-
put increased 3-fold in the ALM group compared with saline 
controls.36 In our third study, we showed that ALM infusion 
significantly reduced the inflammatory response in the pig 
model of lipopolysaccharide (LPS)-induced endotoxemia.37 
ALM infusion dropped the MAP to 47mmHg yet maintained 
CO and SV leading to no change in tissue oxygen perfusion, 
with a concomitant fall in whole body oxygen consumption37 
(Table 3).

Our most recent USSOCOM-funded pig study was a mili-
tary-relevant, noncompressible hemorrhage model induced 
by laparoscopic liver resection.38 ALM-treated pigs had 
higher survival (100%) compared with saline controls (80%), 
lower HRs and a stable permissive hypotensive state (MAP 
47–61mmHg). At these hypotensive blood pressures, ALM 
was neuroprotective with little or no change in brain lactate 
or glycerol compared with 2-fold higher levels in saline con-
trols (P < .05). We also found a significant 40% reduction 
of hypoxia inducible factor (HIF) expression in ALM-treated 
brain cortex.38 These data indicate the ALM therapy resus-
citates the animal into a permissive hypotensive range, and 
reduces secondary brain ischemia at these low MAPs, which is 
consistent with our previous TBI rat study32 (Table 2). During 
infusion of 0.9% NaCl ALM, O2 delivery was improved from 
a higher CO and a more compliant vascular system compared 
with saline controls. In summary, ALM supported a high flow, 
hypotensive, vasodilatory state with improved O2 delivery and 
cerebral protection in a pig model of noncompressible hepatic 
hemorrhage38 (Table 3).

Pig ALM Resuscitation Controversy:  
Superior or Inferior?

Our three pig studies involving pressure-controlled (~74% 
blood loss) and noncompressible hemorrhage (~30–40% 
blood loss) models are in contrast to the recent study of How 
and colleagues from Naval Medical Research Unit San Anto-
nio (NAMRU-SA). The group evaluated three different bolus 
ALM doses and two drip doses across four treatment groups 
in a pressure-controlled porcine model of hemorrhagic shock 
designed to mimic field and Tactical Combat Casualty Care 
(TCCC) conditions.39 They reported that ALM was inferior 
to Hextend in terms of survival but demonstrated a superior 
coagulation benefit (Table 3).

It is difficult at this time to identify the reasons for the loss of 
ALM protection although the group did report to us problems 
with ALM solubility and “cloudy” solutions (not noted in their 
publication).28 We consider this a “red flag” as we have never 
experienced this problem in our rat or pig studies at James 
Cook University, Australia, nor at Aarhus University Hospital, 
Denmark. This implies that one or more of the actives in the 
ALM drip solution has exceeded their solubility limits, known 
as phase joining or precipitation. It is therefore possible that 
increased mortality reported by How and colleagues may have 
been due to incorrect dosing. In addition, the use of the opi-
oid analgesic buprenorphine in their study may also be prob-
lematic, as we have shown its combination with ALM leads 
to less protection and increased mortality.40 Buprenorphine is 
known to cause cardiac and respiratory depression including 
decreases in systolic and diastolic pressures, MAP, and cardiac 

index.40,41 Notwithstanding these discrepancies, the results of 
How and colleagues reinforce the importance of performing 
dose safety studies of ALM therapy in small and large animals 
prior to human translation, which are currently under way at 
our institution.

Experimental Conundrum: Why Do Pigs Require 
Higher ALM Doses Than Rat Models?

In rats, the resuscitation bolus is 0.7mL/kg and the drip 
0.5mL/kg/hr, whereas in pigs the optimal bolus is 4mL/kg 
and followed by a 3mL/kg/hr infusion. Why is there a species 
difference? A possible explanation is differences in concen-
trations of plasma α-acid glycoprotein (AGP), a major drug 
binding protein, which is >7-fold higher in pigs than rats42,43 
(Table 4). AGP, which is also known as orosomucoid, is one 
of the most highly glycosylated proteins in plasma and can 
bind >300 drugs including heparin, steroids, histamine. and 
lidocaine (70% bound) with higher specificity than albumin 
(>95%).44,45 Thus, a higher plasma AGP level will influence the 
free plasma concentrations of lidocaine, which may explain 
why higher ALM doses are required in pigs during resuscita-
tion and stabilization (see earlier). This is further complicated 
during trauma because AGP levels can increase by 2- to 5-fold 
as part of the acute phase response, which would also reduce 
the bioavailability of lidocaine during infusions. Interestingly, 
AGP levels in human plasma are lower than pigs, which sug-
gests that the lower bolus and infusion doses in rats may be 
suitable for translation (Table 4). In addition to bioavailability, 
other reasons for rat-to-pig differences may relate to differ-
ences in drug metabolism and clearance of the drug actives. 
Further studies are required to examine this question.

Safety and Translation to Humans

Understanding the mechanisms of ALM or any drug therapy is 
vitally important for safe field transition and wider adoption 
into civilian prehospital medical care because “among 222 
novel therapeutics approved by the FDA from 2001 through 
2010, 71 (32.0%) were affected by a postmarket safety 
event.”46 This is an extraordinary statement despite the high 
level of institutional review board scrutiny and FDA oversight 
on new trials testing new drugs and appropriate pathways 
for regulatory approvals. Our mission, therefore, is to avoid 
potential adverse events during translation of ALM therapy 
through research by further examining the drug’s underlying 
mechanisms and human testing in a “controlled” environment 
of major surgery before undertaking more complex trauma 
trials.

Final Remarks

We have presented a brief history of ALM drug development 
from cardiac surgery to combat casualty care. The potential 
military benefit of the IV or IO fluid is that it resuscitates af-
ter severe hemorrhage or neurotrauma by improving CNS–
cardiovascular–endothelium coupling and tissue oxygenation, 
and reduces complications arising from secondary injury pro-
gression such as coagulopathy, inflammation, and infection. 
This conceptual scheme has been termed SHOT.28,47 The ALM 
therapy also has the advantage of having low cube weight and 
is stable over a wide temperature range tailored for small expe-
ditionary missions in remote austere environments. The ALM 
fluid IV or IO “drip” may also support and amplify the far 
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forward use of blood products (i.e., person-to-person, prehos-
pital blood banking, freeze-dried plasma/ and platelets) and 
may have a broad-spectrum public purpose for prehospital ci-
vilian trauma and aeromedical retrieval. Notwithstanding our 
progress in ALM development, it is important to emphasize 
that more ALM translational studies and trials are required 
before safe field use is possible.
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