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ABSTRACT

United States Special Operations Forces (SOF) personnel are 
frequently exposed to explosive blasts in training and combat. 
However, the effects of repeated blast exposure on the human 
brain are incompletely understood. Moreover, there is cur-
rently no diagnostic test to detect repeated blast brain injury 
(rBBI). In this “Human Performance Optimization” article, we 
discuss how the development and implementation of a reli-
able diagnostic test for rBBI has the potential to promote SOF 
brain health, combat readiness, and quality of life.

Keywords: blast overpressure; brain injury; special opera-
tions forces; sof; human performance optimization

Introduction

United States (U.S.) Special Operations Forces (SOF) person-
nel experience high levels of blast exposure during training 
and combat.1 The cumulative effects of repeated blast expo-
sure (RBE) on SOF brain health and performance are not fully 
understood.2,3 Consequently, there is no diagnostic test to iden-
tify brain injury resulting from RBE, which we refer to as re-
peated blast brain injury (rBBI). In this “Human Performance 
Optimization” article, we discuss why the development of a 
diagnostic test for rBBI is essential for optimizing SOF brain 
health. We first review the state of the science in blast-related 
brain injury, with a focus on biomechanical, pathological, 
and neuroimaging data. Second, we discuss current technical, 
scientific, logistical, and social barriers to developing and dis-
seminating a diagnostic test for rBBI and propose strategies 
to overcome them. Third, we consider how the extraordinary 
cognitive and physical demands of training and combat im-
pact access to diagnostic testing and the delivery of medical 
care for SOF personnel. Finally, we propose an operational 
definition for rBBI, which is distinct from mild traumatic brain 
injury (mTBI) and traumatic encephalopathy syndrome.4,5

State of the Science

The effects of repeated blast exposure on the human brain are 
not fully understood. Current studies are limited by incomplete 

surveillance of blast exposure frequency and magnitude, an 
inability to distinguish between the effects of blast and blunt 
trauma, and inadequate baseline (i.e., pre-exposure) assess-
ments.6-8 Without comprehensive baseline data on Operators at 
the time of selection, longitudinal measurements of blast-related 
changes in brain structure and function are not possible.6

There are also fundamental gaps in knowledge about the 
mechanisms by which RBE may cause brain injury. Biome-
chanical, computational, and animal models have begun to 
reveal how blast waves penetrate the skull and affect under-
lying brain tissue.9-19 These studies suggest that, depending 
on the head’s orientation with respect to the blast, overpres-
sure waves may enter the intracranial vault via the ear ca-
nals, orbits, nasal sinuses, and foramen magnum, injuring the 
nearby cerebellum, orbitofrontal lobes, temporal lobes, and 
brainstem.9,20,21 Focal injury within these regions may explain 
several symptoms reported by military personnel with RBE, 
which include dizziness (cerebellum), behavioral dysregulation 
and aggression (orbitofrontal lobes), memory loss (temporal 
lobes), autonomic dysfunction, and insomnia (brainstem).22 
The proposed mechanism of focal blast-induced brain injury 
is supported by advanced neuroimaging studies, which have 
identified structural brain abnormalities in close proximity to 
openings in the skull.23

Several lines of evidence suggest that blast overpressure also 
causes diffuse brain injury. Biomechanical studies indicate that 
blast overpressure waves penetrate the helmet and dynami-
cally deform the skull, creating pressure gradients that sweep 
through the brain (Figure 1).12,24,25 Consistent with biomechan-
ical evidence for diffuse brain injury, recent histopathology 
and neuroimaging studies in individuals with blast exposure 
have revealed lesions throughout the thalamus, hypothalamus, 
basal forebrain, and cerebral cortex at tissue interfaces such 
as the grey-white matter junction.13,19,23,26,27 Blast overpressure 
may cause compression and shearing of neurons and glia at 
these interfaces, where there is a change in brain tissue den-
sity.28,29 Radiologic-pathologic correlation studies of military 
personnel exposed to blasts indicate that astroglial scarring 
at the grey-white junction is associated with rBBI and may 
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(A) Four Operators breach a door using an explosive during a combat mission. The Operators are exposed to overpressure waves that emerge 
directly from the blast location (incident waves indicated by curved white lines) and overpressure waves that rebound off the ground and other 
surfaces (reflected waves indicated by the yellow arrow and yellow curved lines). (B) A zoomed-in view of an Operator (third from right in 
the stack formation) demonstrates the mechanisms by which overpressure waves are believed to penetrate the skull. Waves may penetrate the 
openings in the skull—which include the orbits, nasal passages, oral cavity, ear canals, and foramen magnum—resulting in focal brain injury. 
Overpressure waves may also penetrate the helmet and skull, causing diffuse brain injury. The left hemisphere of the Operator’s brain is shown in 
the sagittal plane, with the right hemisphere not shown so that the medial surface of the left hemisphere can be visualized. Default mode network 
functional connectivity is displayed in yellow/orange, and executive control network connectivity is shown in blue. The cingulum bundle, which 
connects the core midline nodes of the default mode network, is shown using standard color-coding for diffusion magnetic resonance imaging 
(MRI) tractography (green = anterior-posterior; red = medial-lateral; blue = superior-inferior). Functional and structural connectivity data are 
superimposed on a T1-weighted MRI scan from an Operator enrolled in the ReBlast study. Functional MRI data were acquired on a 7 Tesla 
scanner, while the diffusion and T1-weighted MRI data were acquired on the 3 Tesla Connectome scanner at the Massachusetts General Hospital 
Athinoula A. Martinos Center for Biomedical Imaging in Boston, MA. Data were processed and analyzed using previously published methods.71 
(C) Representative pathology (arrows) detected by immunohistochemistry in the brains of military personnel exposed to repeated blasts includes 
inflammation, astroglial scarring, axonal injury, and tau deposition.
AT8 = anti-phospho-tau; ß-APP = beta-amyloid precursor protein; GFAP = glial fibrillary acidic protein; IBA1 = ionized calcium binding adaptor 
molecule 1.

FIGURE 1  Mechanisms of blast injury in the human brain.
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be detectable by advanced magnetic resonance imaging (MRI) 
techniques.26,30 Astroglial scarring is rarely seen in cases of 
pure chronic traumatic encephalopathy (CTE), which has 
been described primarily in athletes with repetitive blunt head 
trauma.31,32 Whereas CTE has been described as a tauopathy 
(i.e., a neurodegenerative disorder characterized by accumula-
tion of phosphorylated tau protein within neurons), rBBI may 
be more aptly described as a polyproteinopathy (i.e., a process 
characterized by accumulation of multiple abnormal proteins 
in the brain).32-35

While the precise contributions of focal and diffuse patho-
physiologic mechanisms to rBBI are unknown, it is likely that 
heterogeneous forces are exerted on the brain during thou-
sands of blast exposures.36 A single exposure to overpressure 
may not be sufficient to alter brain structure or function or 
cause long-term symptoms. However, years of cumulative ex-
posure may contribute to a broad spectrum of cognitive symp-
toms such as memory loss and inattention, physical symptoms 
such as headache and dizziness, and psychological symptoms 
related or similar to post-traumatic stress disorder (PTSD) and 
depression.3,8,37 Each of these sequelae—alone or in concert—
has been reported by SOF personnel with high levels of blast 
exposure.38-41

It is also unknown whether the pathophysiology of rBBI differs 
from that of a single blast-induced mTBI (Table 1).42 In other 
words, do multiple subconcussive exposures to blast overpres-
sure cause the same type of brain injury as a single mTBI from 
blast overpressure? We can approach this question from the 
perspective of civilian head trauma, in which the pathology of 
multiple subconcussive blunt traumas (i.e., repetitive head im-
pacts) appears to differ from that of a single blunt mTBI.43,44,45 
By extension, we might expect rBBI to cause brain pathology 
that is distinct from that of a single blast-induced mTBI, but 
this reasoning awaits further evidence.

In summary, the mechanisms underlying rBBI are complex, 
heterogenous, and incompletely understood. Similarly, the 
pathological distinctions between rBBI and a single blast-in-
duced mTBI have not been fully elucidated, in part because it 
is difficult to isolate “pure” blast exposure from concurrent 
blunt head trauma exposure in training and combat. Given 
current gaps in knowledge, translating findings from the labo-
ratory to the war theater is an exceedingly complex and mul-
tidimensional challenge. A diagnostic test for rBBI must not 
only detect the multitude of focal and diffuse effects of blasts 
on the human brain but also distinguish rBBI from brain in-
jury caused by other exposures.

Barriers to the Development of a Diagnostic Test

Scientific Barrier – Measuring the  
Magnitude and Frequency of Blast Exposure
There are no validated tools that accurately measure the 
strength and number of blasts experienced by an Operator. 
Studies using blast gauges to measure pounds per square inch 
suggest that four pounds per square inch is a threshold at 
which a blast adversely affects the human brain.46 However, 
these studies are limited by gauge placement (typically on the 
back of the helmet, chest, and one shoulder), which precludes 
measurement of the exact amount of overpressure that reaches 
the brain. Given that placement of an intracranial blast gauge 
is not ethical and that placement of blast gauges at sites of 

skull entry (e.g., the orbits and ear canals) could interfere with 
vision and communication, the options for blast gauge place-
ment are inherently limited. Gauges may also malfunction in 
the harsh environments in which SOF personnel operate, or 
they may fail to detect rounds from a weapon with a rapid 
firing speed. Blast gauges thus may not provide a measurement 
of the ground truth (i.e., the true magnitude and number of 
blasts an Operator experienced).

Using subjective self-report questionnaires, in which Opera-
tors are asked to provide a cumulative count of blast exposure 
from various weapons systems, is a complementary approach 
to objective data gathered through blast gauges.6 This ap-
proach is currently the only method of eliciting exposures that 
were not otherwise measured, witnessed, or treated. However, 
important limitations include recall bias and lack of validation 
against blast gauge or alternative measurements. Furthermore, 
self-report assessments are unlikely to account for variations 
in Operator positioning with respect to the blast, physical bar-
riers between the Operator and the blast, and reverberations 
of blast waves off nearby objects and surfaces—all of which 
influence the amount of overpressure that reaches the brain.24

A recently published measure, the Generalized Blast Expo-
sure Value, asks respondents to self-report average lifetime 
exposure to five categories of blast ranging from small- and 
medium-sized arms to large explosives or targeted explosives 
in close range.36 Other measures like the Blast Ordnance and 
Occupational Exposure Measure incorporate information 
about recent exposures as well as history of breacher train-
ing courses attended and taught, during which exposures are 
especially frequent.47 These measures assess cumulative blast 
exposure (i.e., over months to years), rather than incremental 
changes in exposure, which would be required to measure the 
relationship between increasing blast exposure and changes 
in neuroimaging or blood-based biomarkers. In summary, 
though a variety of sensors and self-report questionnaires have 
been designed to measure blast exposure, precise, reliable, and 
longitudinal measurements remain elusive.

Scientific Barrier – Accounting for Resilience
Additional barriers to development of a diagnostic test for rBBI 
include the unique characteristics of Operators themselves. 
Within the military, the SOF community may be both the most 
exposed and the most resilient to the effects of blasts.48,49 With 
respect to resilience – the ability to withstand or quickly re-
cover from difficult situations – SOF personnel may possess 
characteristics that affect brain structure and function in 
unique ways.50 For example, the cognitive and physical capa-
bilities that enable them to withstand the grueling selection 
process and that are further refined during training and com-
bat missions (which require continuous high performance) 
may promote faster recovery from brain injury.49,51,52 Resil-
ience has also been associated with more robust physiologic 
health, as measured by cerebral blood flow velocity, and with 
cognitive reserve, which is the brain’s resistance to damage.53-55 
Cognitive reserve can develop over a lifetime of pursuing men-
tally challenging tasks such as educational and occupational 
specialization and training.56

Scientific Barrier – Accounting for Additional Exposures
The broad spectrum of additional harmful exposures that SOF 
personnel may experience poses a related challenge in isolat-
ing blast effects on the brain. Many SOF personnel experience 
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both blast and blunt head trauma, which are often simultane-
ous (e.g., the head striking or being struck by a physical object 
in the setting of high explosive exposure), complicating efforts 
to distinguish the unique effects of blast versus blunt traumatic 
brain injury (TBI).23 Exposure to blunt TBI may also occur 
pre-selection, particularly in Operators with a history of con-
tact sport participation, further complicating efforts to identify 
a relationship between RBE and brain injury. For example, in a 
recent histopathological analysis of autopsied brain specimens 
from military personnel, only those with pre-existing partici-
pation in contact sports were found to have the characteristic 
pattern of phosphorylated tau deposition within their brains 
that defines the diagnostic lesion of CTE.31

During years of training with explosives, such as those used to 
breach buildings, Operators may also be exposed to aerosol-
ized heavy metals, which can reach the central nervous system 

via inhalation, producing cognitive and motor deficits.57 Sim-
ilar exposures to heavy metals and other toxins are encoun-
tered on helicopters and fixed-wing planes, where Operators 
are exposed to fumes from artillery and rockets.58 Though 
data are limited, high rates of headaches have been reported in 
SOF helicopter pilots.59 Whether headaches and other symp-
toms are attributable to fume inhalation, blast exposure, or to 
some combination of these factors or others is unknown.

The extreme environmental conditions under which SOF per-
sonnel operate yield additional exposures, such as those asso-
ciated with the high altitudes encountered during mountain 
warfare and by AC-130 and CV-22 Operators during air mis-
sions. Animal studies suggest that exposure to high altitudes 
may be associated with tau deposition, neuroinflammation, 
and myelin loss.60 While this finding has not been replicated 
in humans, the potential implications need to be considered 

TABLE 1  Comparison of Mild Traumatic Brain Injury, Traumatic Encephalopathy Syndrome, and Repeated Blast Brain Injury

Diagnosis Exposure Pathophysiology Diagnostic criteria Symptoms Treatment

mTBI Single external 
force (blunt 
contact, rotational 
acceleration/
deceleration, or 
blast overpressure)

Diffuse axonal injury; 
contusion; subarachnoid, 
subdural, or epidural 
hemorrhage; cerebral 
edema; and/or skull 
fracture93

Traumatically induced structural 
injury and/or physiological 
disruption of brain function as a 
result of an external force that leads 
to at least one new or worsening 
clinical symptom immediately 
following the event (e.g., loss of 
consciousness ≤30 minutes, post-
traumatic amnesia ≤24 hours, 
or focal neurological deficits), 
with normal conventional brain 
imaging4,94

Headache, confusion, 
dyscoordination, 
memory loss, nausea, 
vomiting, dizziness, 
ringing in the ears, 
sleepiness, excessive 
fatigue, irritability, 
disinhibition, and 
emotional lability94,95

Rest, treat 
individual 
symptoms, 
prevention 
of secondary 
injury95,96

TES 
(proposed)

Repeated exposure 
to multiple blunt 
force impacts to 
the head and/
or rotational 
acceleration/ 
deceleration events 
that do not meet 
mTBI diagnostic 
criteria, such as 
those sustained 
in American-style 
football*

Current evidence suggests 
that RHI is associated 
with CTE, in which 
hyperphosphorylated tau 
protein forms neurofibrillary 
tangles and astrocytic 
tangles along small cortical 
blood vessels, particularly 
in the sulcal depths.32,33 
However, CTE can only 
be confirmed after death if 
brain autopsy reveals the 
pathognomonic pattern of 
tau protein deposition.5,97

Proposed diagnostic criteria for  
TES are 1) substantial exposure to 
RHI, the threshold for which has not 
yet been determined; 2) cognitive 
impairment and/or neurobehavioral 
dysregulation; 3) progressive 
worsening of these symptoms over 
at least one year in the absence of 
continued exposure to RHI; and 
4) clinical symptoms are not fully
accounted for by another neurologic, 
psychiatric or medical condition5

Cognitive impairment 
in the domains of 
episodic memory and/
or executive function; 
decreased regulation 
of emotions and/or 
behavior, including 
explosiveness, 
impulsivity, rage, 
violent outbursts, 
having a short fuse, or 
emotional lability5 

Unknown; 
treat 
individual 
symptoms96

rBBI 
(proposed)

Repeated 
exposure to blast 
overpressure events 
that do not meet 
mTBI diagnostic 
criteria, such as 
those sustained 
during explosive 
breaching

Current evidence suggests 
that RBE may lead to 
astroglial scarring26

Proposed diagnostic criteria for  
rBBI are 1) a quantitative change in 
a blood or neuroimaging biomarker 
that exceeds the reliable change 
index87 for that biomarker; and  
2) the biomarker change occurs
during a period of RBE

Individuals may be 
asymptomatic or may 
experience dizziness, 
dyscoordination,
vision and hearing 
problems, sensitivity 
to light and noise, 
numbness, tingling, 
change in taste/
smell, inattention, 
forgetfulness, difficulty 
with decision-making, 
slowed thinking, 
fatigue, sleep difficulty, 
irritability, and/or poor 
frustration tolerance36

Unknown; 
treat 
individual 
symptoms96

*Recent histopathological evidence has called into question the pathophysiologic link between RBE and CTE.31 Thus, we do not include RBE as 
a risk factor for TES, and these histopathological data are a primary motivation for distinguishing rBBI from TES. The diagnostic criteria that 
distinguish rBBI from TES are as follows: exposure to multiple blast overpressure events is required for rBBI; there must be a quantitative change 
in a blood or imaging biomarker that is associated with increased exposure to blast overpressure for a diagnosis of rBBI; and rBBI can be asymp-
tomatic, given that the diagnosis is based upon quantitative biomarker changes, not the onset of new symptoms. The requirement of a biomarker 
change for the diagnosis of rBBI is proposed to increase the specificity of the rBBI diagnosis, given that additional exposures (e.g., heavy metals) 
and other neuropsychiatric disorders (e.g., PTSD) are associated with similar constellations of symptoms. By proposing diagnostic criteria that 
include individuals with asymptomatic rBBI, we intend to facilitate early detection and timely intervention.
CTE =chronic traumatic encephalopathy; mTBI = mild traumatic brain injury; rBBI = repeated blast brain injury; RBE = repeated blast exposure; 
RHI = repetitive head impacts; TES = traumatic encephalopathy syndrome; PTSD = post-traumatic stress disorder.
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when developing diagnostic tests for SOF personnel who are 
exposed to both blasts and high altitudes. Similarly, Navy 
SEALs, Air Force Special Tactics Teams, Green Beret Combat 
Dive Teams, and other Operators who perform combat div-
ing, as well as Explosive Ordnance Disposal specialists who 
perform deep diving, may be at risk for a broad spectrum of 
neurological symptoms and electrophysiological alterations 
associated with diving.61

Additional exposures include vibrations and g-forces expe-
rienced by Special Operations Aviation elements, Air Force 
Combat Search and Rescue Operators, and Special Tactics Air-
men, as well as rapid acceleration-deceleration forces experi-
enced by Naval Special Warfare Combatant-craft Crewmen as 
they travel over various sea-state conditions at high speed.62-64 
Finally, the physical and emotional stress of repeated expo-
sure to combat and the continuous threat of harm may lead 
to symptoms and brain alterations that resemble those related 
to blast exposure.65-67 The current inability to differentiate 
the effects of these myriad exposures on the brain is a major 
motivation for the development of blast-specific diagnostic 
biomarkers.

Logistical Barrier – Deployment of 
Diagnostic Tests to Combat Zones
Diagnostic testing protocols for rBBI will need to be adaptable 
to the relative needs and conditions of training and combat. 
During training, utilization of state-of-the-art, large-scale in-
frastructure –such as MRI and positron emission tomography 
(PET) scanners – may be feasible. Hence, optimization of diag-
nostic test performance may involve leveraging these imaging 
technologies, which have shown promise in multiple observa-
tional studies over the past two decades.23,68-70 The potential 
diagnostic utility of MRI and PET biomarkers in U.S. SOF 
personnel is being tested in the ReBlast Pilot study, which was 
designed to inform and accelerate efforts to develop a diagnos-
tic test for rBBI.71

In combat, an essential requirement of a diagnostic test for 
rBBI is its deployability. To meet this requirement, a test must 
be portable, compact, rugged, and secure and provide real-time 
feedback. These stipulations rule out brain MRI and PET scans, 
which are not feasible to deploy in theater at scale. Technolo-
gies that could be deployable in theater include point-of-care 
blood tests, application-based cognitive performance tests, 
electronically delivered and scored symptom questionnaires, 
and targeted neurological examinations (i.e., mental status, 
cranial nerves, sensory/motor function, reflexes).72-74 These 
tests are being assessed for their diagnostic utility in multiple 
ongoing studies of blast TBI in military personnel, which in-
clude EVOLVE, LETBI, LIMBIC-CENC, ENIGMA, ReBlast, 
and INVICTA.71,75-79 It remains to be determined which tests, 
alone or in combination, will provide the greatest sensitivity 
and specificity for detecting rBBI in training and combat.

Social Barrier – Acknowledging Symptoms and  
Seeking Care in a Culture of Self-Sacrifice and Fortitude
Though empiric evidence about SOF attitudes toward their 
own health care is limited, public interviews with SOF per-
sonnel suggest that commitment to the team and mission is 
prioritized over personal health and safety.22,80 It is therefore 
not surprising that many Operators are willing to train and 
deploy even when they are experiencing physical, cognitive, or 
psychological symptoms. Indeed, the ability to persevere and 

succeed despite pain and discomfort is an essential component 
of SOF selection.

Beyond the understandable reluctance of Operators to seek 
medical care that could lead to missing training or deployment 
is their potential hesitancy to call attention to symptoms that 
are perceived as mental rather than physical. The implications 
of the “invisible wounds of war” for individual Operators, and 
for the military more broadly, have been widely discussed in 
opinion articles and policy statements.81 There have been ex-
tensive efforts by the U.S. Special Operations Command and 
the U.S. Department of Defense to raise awareness about these 
invisible wounds and to provide support for the millions of 
military personnel who have experienced TBI and PTSD.82 The 
creation of centers of excellence that provide care for mili-
tary personnel with TBI and PTSD is emblematic of these ef-
forts.83-85 However, most SOF personnel do not routinely seek 
these services early in their careers, when symptoms may have 
the best chance of responding to therapies.86

Development and Deployment of a  
New Diagnostic Test for SOF Personnel

Operational Definitions of rBBI and Recovery
A foundational step toward development of a diagnostic 
test for rBBI is to define rBBI itself. Despite recent efforts to 
standardize terminology describing blast exposure, there are 
currently no standardized criteria that define a brain injury re-
sulting from RBE.46 Conceptually, rBBI is a brain injury caused 
by the cumulative effects of multiple blast overpressure events, 
many of which do not meet the U.S. Department of Defense/
Department of Veterans Affairs criteria for a TBI.4 Operation-
ally, we propose a definition of rBBI as a quantitative change 
in a blood or neuroimaging biomarker that exceeds the reliable 
change index for that biomarker and is associated with RBE 
during the same time period.87

Using this working definition of rBBI, a diagnostic test should 
classify individual Operators into one of four groups:

• No rBBI: No evidence of rBBI, regardless of the extent of
blast exposure or the presence of new physical symptoms,
cognitive deficits, or psychological health changes. We antic-
ipate that symptoms observed in this group may be driven
by comorbid psychological illness (e.g., PTSD), while ac-
knowledging the potential for false negatives (e.g., currently
available neuroimaging and blood biomarkers may lack
sensitivity to detect rBBI in this group).

• Asymptomatic rBBI: Evidence of rBBI but absence of new
physical symptoms, cognitive deficits, and psychological
health changes. A lack of measurable symptoms in this
group may represent “false negatives” (e.g., currently avail-
able self-reported and performance-based measures may
lack sensitivity to detect subtle changes in symptoms, or
Operators may under-report symptoms).

• Symptomatic rBBI: Evidence of rBBI and development of
new physical symptoms, cognitive deficits, or psychological
health changes.

• Recovery from rBBI: Evidence of rBBI and resolution of
physical symptoms, cognitive deficits, or psychological
health changes that were detected at an earlier assessment.

Accurate classification requires careful baselining to deter-
mine pre-exposure biomarker levels and serial assessment to 
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ensure early detection and treatment. Moreover, the proposed 
classification system does not account for the possibility that 
symptoms may emerge weeks to years after RBE, resulting in 
misattribution of symptoms to other sources. We therefore an-
ticipate that this diagnostic classification system will require 
iterative revisions as more information about the temporal 
dynamics of rBBI becomes available and as new tools are de-
veloped to measure concurrent exposures.

Proposal for a Diagnostic Risk Assessment Matrix
Once individual Operators are classified into one of the above 
four groups, we advocate for the implementation of a Risk 
Assessment Matrix to guide symptom monitoring and treat-
ment (Figure 2). This Risk Assessment Matrix is designed to 
facilitate the realization of two goals:

1. Individualized care: rBBI symptoms exist on a continuum
and therefore require an individualized approach in which
Operators are monitored with direct comparison to base-
line assessments performed at the time of selection.

2. Operational flexibility: While Operators exposed to high
numbers of blasts during training will have access to diag-
nostic monitoring protocols, Operators who experience rBBI
while deployed may have limited access to medical care.

Thus, the Risk Assessment Matrix must provide guidance 
about optimal clinical management that accounts for these 
constraints. This Risk Assessment Matrix could provide an 
early clinical guide that will be refined as additional evidence 
becomes available.

FIGURE 2  Repeated blast brain injury (rBBI) risk assessment matrix.

rBBI No rBBI

Symptomatic high
(treat)

uncertain 
(monitor)

Asymptomatic moderate 
(frequent monitoring)

low
(monitor)

In this proposed Risk Assessment Matrix, medical care for Operators 
is individualized based on the presence or absence of cognitive, physi-
cal, and psychological symptoms, as well as on the presence or absence 
of objective changes in neuroimaging or blood biomarkers.
rBBI = repeated blast brain injury.

Clinical Management of rBBI

Once an Operator is diagnosed with rBBI, what is the appro-
priate clinical management to optimize brain healing? We pro-
pose four guiding principles, recognizing that it is premature 
to recommend specific clinical guidelines.

First, management strategies will likely differ depending on 
where the diagnosis is made. For Operators diagnosed with 
rBBI during training, it may be possible to reduce or eliminate 
further blast exposure for a period of time that allows the brain 
to heal, adapt, or compensate for the injury. For Operators 
diagnosed with rBBI after being exposed to repeated blasts 
during combat and other deployment settings, optimal man-
agement will depend upon the operational requirements of the 
mission and the potential risks to the mission if an Operator 
were to be temporarily sidelined.

Second, proof-of-principle evidence suggests that multidisci-
plinary treatment programs with individualized approaches 

to psychotherapy and cognitive rehabilitation may be effec-
tive in treating Operators with both blast-induced mTBI and 
chronic symptoms from RBE.85 As we await disease-modifying 
therapies, these multidisciplinary treatment programs may 
currently be the most effective way to treat Operators who 
experience cognitive, psychological, and physical symptoms 
after blast exposure. However, randomized controlled trials in 
large numbers of SOF personnel have not yet been performed. 
Hence, multidisciplinary, individualized treatment programs 
require further evaluation before they can be endorsed by clin-
ical guidelines.

Third, when assessing responses to therapy, there are likely 
to be differences in brain monitoring protocols that are even-
tually translated to clinical care for rBBI and single, blast-
induced mTBI. For example, rBBI may be associated with a 
specific combination of blood biomarkers that are expressed 
chronically.88,89 Studies of blunt TBI in civilians indicate that 
blood tau and neurofilament light are elevated in the sub-
acute and chronic stages of injury, as compared to ubiquitin 
C-terminal hydrolase L1, which becomes elevated in the blood
acutely, and glial fibrillary acidic protein, which is elevated
acutely, declines subacutely, but may rise again starting six
months post-injury.90,91 Determining the temporal dynamics of
these blood biomarkers is critically important for their clinical
translation as measures of brain injury and brain healing.

Fourth, just as blunt TBI can cause chronic brain inflammation 
and contribute to neurodegeneration, the effects of rBBI may 
be long-lasting and progressive.34,35,92 Early detection and treat-
ment of rBBI, before it becomes irreversible, is a major moti-
vation for developing a diagnostic test for rBBI. Regardless of 
how diagnostic information about rBBI is ultimately used to 
inform clinical care, a reliable diagnostic test will empower 
Operators, team leaders, commanders, and U.S. Special Oper-
ations Command leadership to make more informed decisions 
about combat readiness and capacity for peak performance.

Conclusions

Historically, a diagnostic test for rBBI has been elusive due 
to a variety of barriers, including the pathophysiologic com-
plexity of blast overpressure, which exerts both focal and dif-
fuse effects on brain structure and function. Moreover, SOF 
personnel experience a myriad of additional exposures during 
training and combat, such that rBBI symptoms may be diffi-
cult to distinguish from those related to blunt head trauma, 
combat stress, or exposure to heavy metals, high altitudes, div-
ing, aircraft vibrations, and acceleration-deceleration forces on 
fast-moving Naval Special Warfare Combatant-craft Crewmen 
boats. To address this complex, multidimensional problem, 
we advocate for the development of a multimodal diagnostic 
battery that will integrate data from cognitive performance, 
psychological health, physical symptoms, blood measures, and 
brain imaging to detect and monitor the trajectory of rBBI 
throughout an Operator’s career. Such a test must be specific 
for rBBI and deployable to combat zones. We propose that this 
diagnostic test will provide the foundation for a Risk Assess-
ment Matrix to guide decision-making about symptom mon-
itoring and treatment. A diagnostic testing battery will also 
provide new targets for therapies aimed at preventing or alle-
viating symptoms caused by rBBI. A reliable diagnostic test for 
rBBI will thus promote SOF brain health, combat readiness, 
and quality of life.
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